Abstract:To take the esports scene to the next level, we introduce PandaSkill, a framework for assessing player performance and skill rating. Traditional rating systems like Elo and TrueSkill often overlook individual contributions and face challenges in professional esports due to limited game data and fragmented competitive scenes. PandaSkill leverages machine learning to estimate in-game player performance from individual player statistics. Each in-game role is modeled independently, ensuring a fair comparison between them. Then, using these performance scores, PandaSkill updates the player skill ratings using the Bayesian framework OpenSkill in a free-for-all setting. In this setting, skill ratings are updated solely based on performance scores rather than game outcomes, hightlighting individual contributions. To address the challenge of isolated rating pools that hinder cross-regional comparisons, PandaSkill introduces a dual-rating system that combines players' regional ratings with a meta-rating representing each region's overall skill level. Applying PandaSkill to five years of professional League of Legends matches worldwide, we show that our method produces skill ratings that better predict game outcomes and align more closely with expert opinions compared to existing methods.
Abstract:Most of state of the art methods applied on time series consist of deep learning methods that are too complex to be interpreted. This lack of interpretability is a major drawback, as several applications in the real world are critical tasks, such as the medical field or the autonomous driving field. The explainability of models applied on time series has not gather much attention compared to the computer vision or the natural language processing fields. In this paper, we present an overview of existing explainable AI (XAI) methods applied on time series and illustrate the type of explanations they produce. We also provide a reflection on the impact of these explanation methods to provide confidence and trust in the AI systems.