Abstract:This paper investigates the maximum downlink spectral efficiency of low earth orbit (LEO) constellations. Spectral efficiency, in this context, refers to the sum rate of the entire network per unit spectrum per unit area on the earth's surface. For practicality all links employ single-user codebooks and treat interference as noise. To estimate the maximum achievable spectral efficiency, we propose and analyze a regular configuration, which deploys satellites and ground terminals in hexagonal lattices. Additionally, for wideband networks with arbitrary satellite configurations, we introduce a subband allocation algorithm aimed at maximizing the overall spectral efficiency. Simulation results indicate that the regular configuration is more efficient than random configurations. As the number of randomly placed satellites increases within an area, the subband allocation algorithm achieves a spectral efficiency that approaches the spectral efficiency achieved by the regular configuration. Further improvements are demonstrated by reconfiguring associations so that nearby transmitters avoid pointing to the same area.
Abstract:This paper proposes the transmission of beacon signals to alert potential interferers of an ongoing or impending passive sensing measurement. We focus on the interference from Low-Earth Orbiting (LEO) satellites to a radio-telescope. We compare the beacon approach with two versions of Radio Quiet Zones (RQZs): fixed quiet zones on the ground and in the sky, and dynamic quiet zones that vary across satellites. The beacon-assisted approach can potentially exploit channel reciprocity, which accounts for short-term channel variations between the satellite and radio telescope. System considerations associated with beacon design and potential schemes for beacon transmission are discussed. The probability of excessive Radio Frequency Interference (RFI) at the radio telescope (outage probability) and the fraction of active links in the satellite network are used as performance metrics. Numerical simulations compare the performance of the approaches considered, and show that the beacon approach enables more active satellite links relative to quiet zones for a given outage probability.