This paper investigates the maximum downlink spectral efficiency of low earth orbit (LEO) constellations. Spectral efficiency, in this context, refers to the sum rate of the entire network per unit spectrum per unit area on the earth's surface. For practicality all links employ single-user codebooks and treat interference as noise. To estimate the maximum achievable spectral efficiency, we propose and analyze a regular configuration, which deploys satellites and ground terminals in hexagonal lattices. Additionally, for wideband networks with arbitrary satellite configurations, we introduce a subband allocation algorithm aimed at maximizing the overall spectral efficiency. Simulation results indicate that the regular configuration is more efficient than random configurations. As the number of randomly placed satellites increases within an area, the subband allocation algorithm achieves a spectral efficiency that approaches the spectral efficiency achieved by the regular configuration. Further improvements are demonstrated by reconfiguring associations so that nearby transmitters avoid pointing to the same area.