Abstract:Machine learning techniques have recently received significant attention as promising approaches to deal with the optical channel impairments, and in particular, the nonlinear effects. In this work, a machine learning-based classification technique, known as the Parzen window (PW) classifier, is applied to mitigate the nonlinear effects in the optical channel. The PW classifier is used as a detector with improved nonlinear decision boundaries more adapted to the nonlinear fiber channel. Performance improvement is observed when applying the PW in the context of dispersion managed and dispersion unmanaged systems.
Abstract:We investigate the performance of a machine learning classification technique, called the Parzen window, to mitigate the fiber nonlinearity in the context of dispersion managed and dispersion unmanaged systems. The technique is applied for detection at the receiver side, and deals with the non-Gaussian nonlinear effects by designing improved decision boundaries. We also propose a two-stage mitigation technique using digital back propagation and Parzen window for dispersion unmanaged systems. In this case, digital back propagation compensates for the deterministic nonlinearity and the Parzen window deals with the stochastic nonlinear signal-noise interactions, which are not taken into account by digital back propagation. A performance improvement up to 0:4 dB in terms of Q factor is observed.