Abstract:Efficient visual trackers overfit to their training distributions and lack generalization abilities, resulting in them performing well on their respective in-distribution (ID) test sets and not as well on out-of-distribution (OOD) sequences, imposing limitations to their deployment in-the-wild under constrained resources. We introduce SiamABC, a highly efficient Siamese tracker that significantly improves tracking performance, even on OOD sequences. SiamABC takes advantage of new architectural designs in the way it bridges the dynamic variability of the target, and of new losses for training. Also, it directly addresses OOD tracking generalization by including a fast backward-free dynamic test-time adaptation method that continuously adapts the model according to the dynamic visual changes of the target. Our extensive experiments suggest that SiamABC shows remarkable performance gains in OOD sets while maintaining accurate performance on the ID benchmarks. SiamABC outperforms MixFormerV2-S by 7.6\% on the OOD AVisT benchmark while being 3x faster (100 FPS) on a CPU.
Abstract:Catastrophic forgetting has been the leading issue in the domain of lifelong learning in artificial systems. Current artificial systems are reasonably good at learning domains they have seen before; however, as soon as they encounter something new, they either go through a significant performance deterioration or if you try to teach them the new distribution of data, they forget what they have learned before. Additionally, they are also prone to being overly confident when performing inference on seen as well as unseen data, causing significant reliability issues when lives are at stake. Therefore, it is extremely important to dig into this problem and formulate an approach that will be continually adaptable as well as reliable. If we move away from the engineering domain of such systems and look into biological systems, we can realize that these very systems are very efficient at computing the reliance as well as the uncertainty of accurate predictions that further help them refine the inference in a life-long setting. These systems are not perfect; however, they do give us a solid understanding of the reasoning under uncertainty which takes us to the domain of Bayesian reasoning. We incorporate this Bayesian inference with thresholding mechanism as to mimic more biologically inspired models, but only at spatial level. Further, we reproduce a recent study on Bayesian Inference with Spiking Neural Networks for Continual Learning to compare against it as a suitable biologically inspired Bayesian framework. Overall, we investigate the plausibility of biologically inspired Bayesian Learning in artificial systems on a vision dataset, MNIST, and show relative performance improvement under the conditions when the model is forced to predict VS when the model is not.
Abstract:Automated cellular instance segmentation is a process utilized for accelerating biological research for the past two decades, and recent advancements have produced higher quality results with less effort from the biologist. Most current endeavors focus on completely cutting the researcher out of the picture by generating highly generalized models. However, these models invariably fail when faced with novel data, distributed differently than the ones used for training. Rather than approaching the problem with methods that presume the availability of large amounts of target data and computing power for retraining, in this work we address the even greater challenge of designing an approach that requires minimal amounts of new annotated data as well as training time. We do so by designing specialized contrastive losses that leverage the few annotated samples very efficiently. A large set of results show that 3 to 5 annotations lead to models with accuracy that: 1) significantly mitigate the covariate shift effects; 2) matches or surpasses other adaptation methods; 3) even approaches methods that have been fully retrained on the target distribution. The adaptation training is only a few minutes, paving a path towards a balance between model performance, computing requirements and expert-level annotation needs.