Abstract:Missing feature values are a significant hurdle for downstream machine-learning tasks such as classification and regression. However, they are pervasive in multiple real-life use cases, for instance, in drug discovery research. Moreover, imputation methods might be time-consuming and offer few guarantees on the imputation quality, especially for not-missing-at-random mechanisms. We propose an imputation approach named F3I based on the iterative improvement of a K-nearest neighbor imputation that learns the weights for each neighbor of a data point, optimizing for the most likely distribution of points over data points. This algorithm can also be jointly trained with a downstream task on the imputed values. We provide a theoretical analysis of the imputation quality by F3I for several types of missing mechanisms. We also demonstrate the performance of F3I on both synthetic data sets and real-life drug repurposing and handwritten-digit recognition data.
Abstract:Functional linear discriminant analysis (FLDA) is a powerful tool that extends LDA-mediated multiclass classification and dimension reduction to univariate time-series functions. However, in the age of large multivariate and incomplete data, statistical dependencies between features must be estimated in a computationally tractable way, while also dealing with missing data. There is a need for a computationally tractable approach that considers the statistical dependencies between features and can handle missing values. We here develop a multivariate version of FLDA (MUDRA) to tackle this issue and describe an efficient expectation/conditional-maximization (ECM) algorithm to infer its parameters. We assess its predictive power on the "Articulary Word Recognition" data set and show its improvement over the state-of-the-art, especially in the case of missing data. MUDRA allows interpretable classification of data sets with large proportions of missing data, which will be particularly useful for medical or psychological data sets.