SU
Abstract:Over the past years, embedding learning on networks has shown tremendous results in link prediction tasks for complex systems, with a wide range of real-life applications. Learning a representation for each node in a knowledge graph allows us to capture topological and semantic information, which can be processed in downstream analyses later. In the link prediction task, high-dimensional network information is encoded into low-dimensional vectors, which are then fed to a predictor to infer new connections between nodes in the network. As the network complexity (that is, the numbers of connections and types of interactions) grows, embedding learning turns out increasingly challenging. This review covers published models on embedding learning on multiplex networks for link prediction. First, we propose refined taxonomies to classify and compare models, depending on the type of embeddings and embedding techniques. Second, we review and address the problem of reproducible and fair evaluation of embedding learning on multiplex networks for the link prediction task. Finally, we tackle evaluation on directed multiplex networks by proposing a novel and fair testing procedure. This review constitutes a crucial step towards the development of more performant and tractable embedding learning approaches for multiplex networks and their fair evaluation for the link prediction task. We also suggest guidelines on the evaluation of models, and provide an informed perspective on the challenges and tools currently available to address downstream analyses applied to multiplex networks.
Abstract:Functional linear discriminant analysis (FLDA) is a powerful tool that extends LDA-mediated multiclass classification and dimension reduction to univariate time-series functions. However, in the age of large multivariate and incomplete data, statistical dependencies between features must be estimated in a computationally tractable way, while also dealing with missing data. There is a need for a computationally tractable approach that considers the statistical dependencies between features and can handle missing values. We here develop a multivariate version of FLDA (MUDRA) to tackle this issue and describe an efficient expectation/conditional-maximization (ECM) algorithm to infer its parameters. We assess its predictive power on the "Articulary Word Recognition" data set and show its improvement over the state-of-the-art, especially in the case of missing data. MUDRA allows interpretable classification of data sets with large proportions of missing data, which will be particularly useful for medical or psychological data sets.