Abstract:In the effort to learn from extensive collections of distributed data, federated learning has emerged as a promising approach for preserving privacy by using a gradient-sharing mechanism instead of exchanging raw data. However, recent studies show that private training data can be leaked through many gradient attacks. While previous analytical-based attacks have successfully reconstructed input data from fully connected layers, their effectiveness diminishes when applied to convolutional layers. This paper introduces an advanced data leakage method to efficiently exploit convolutional layers' gradients. We present a surprising finding: even with non-fully invertible activation functions, such as ReLU, we can analytically reconstruct training samples from the gradients. To the best of our knowledge, this is the first analytical approach that successfully reconstructs convolutional layer inputs directly from the gradients, bypassing the need to reconstruct layers' outputs. Prior research has mainly concentrated on the weight constraints of convolution layers, overlooking the significance of gradient constraints. Our findings demonstrate that existing analytical methods used to estimate the risk of gradient attacks lack accuracy. In some layers, attacks can be launched with less than 5% of the reported constraints.
Abstract:This paper investigates the potential privacy risks associated with forecasting models, with specific emphasis on their application in the context of smart grids. While machine learning and deep learning algorithms offer valuable utility, concerns arise regarding their exposure of sensitive information. Previous studies have focused on classification models, overlooking risks associated with forecasting models. Deep learning based forecasting models, such as Long Short Term Memory (LSTM), play a crucial role in several applications including optimizing smart grid systems but also introduce privacy risks. Our study analyzes the ability of forecasting models to leak global properties and privacy threats in smart grid systems. We demonstrate that a black box access to an LSTM model can reveal a significant amount of information equivalent to having access to the data itself (with the difference being as low as 1% in Area Under the ROC Curve). This highlights the importance of protecting forecasting models at the same level as the data.