CB
Abstract:Synthetic images disseminated online significantly differ from those used during the training and evaluation of the state-of-the-art detectors. In this work, we analyze the performance of synthetic image detectors as deceptive synthetic images evolve throughout their online lifespan. Our study reveals that, despite advancements in the field, current state-of-the-art detectors struggle to distinguish between synthetic and real images in the wild. Moreover, we show that the time elapsed since the initial online appearance of a synthetic image negatively affects the performance of most detectors. Ultimately, by employing a retrieval-assisted detection approach, we demonstrate the feasibility to maintain initial detection performance throughout the whole online lifespan of an image and enhance the average detection efficacy across several state-of-the-art detectors by 6.7% and 7.8% for balanced accuracy and AUC metrics, respectively.
Abstract:With the aim of evaluating image forensics tools, we propose a methodology to create forgeries traces, leaving intact the semantics of the image. Thus, the only forgery cues left are the specific alterations of one or several aspects of the image formation pipeline. This methodology creates automatically forged images that are challenging to detect for forensic tools and overcomes the problem of creating convincing semantic forgeries. Based on this methodology, we create the Trace database and conduct an evaluation of the main state-of-the-art image forensics tools.