Abstract:This paper investigates covert data transmission within a multiple-input multiple-output (MIMO) over-the-air computation (AirComp) network, where sensors transmit data to the access point (AP) while guaranteeing covertness to the warden (Willie). Simultaneously, the AP introduces artificial noise (AN) to confuse Willie, meeting the covert requirement. We address the challenge of minimizing mean-square-error (MSE) of the AP, while considering transmit power constraints at both the AP and the sensors, as well as ensuring the covert transmission to Willie with a low detection error probability (DEP). However, obtaining globally optimal solutions for the investigated non-convex problem is challenging due to the interdependence of optimization variables. To tackle this problem, we introduce an exact penalty algorithm and transform the optimization problem into a difference-of-convex (DC) form problem to find a locally optimal solution. Simulation results showcase the superior performance in terms of our proposed scheme in comparison to the benchmark schemes.