Abstract:We present our solutions to the Google Landmark Challenges 2021, for both the retrieval and the recognition tracks. Both solutions are ensembles of transformers and ConvNet models based on Sub-center ArcFace with dynamic margins. Since the two tracks share the same training data, we used the same pipeline and training approach, but with different model selections for the ensemble and different post-processing. The key improvement over last year is newer state-of-the-art vision architectures, especially transformers which significantly outperform ConvNets for the retrieval task. We finished third and fourth places for the retrieval and recognition tracks respectively.
Abstract:We present our winning solution to the SIIM-ISIC Melanoma Classification Challenge. It is an ensemble of convolutions neural network (CNN) models with different backbones and input sizes, most of which are image-only models while a few of them used image-level and patient-level metadata. The keys to our winning are: (1) stable validation scheme (2) good choice of model target (3) carefully tuned pipeline and (4) ensembling with very diverse models. The winning submission scored 0.9600 AUC on cross validation and 0.9490 AUC on private leaderboard.
Abstract:We present our third place solution to the Google Landmark Recognition 2020 competition. It is an ensemble of global features only Sub-center ArcFace models. We introduce dynamic margins for ArcFace loss, a family of tune-able margin functions of class size, designed to deal with the extreme imbalance in GLDv2 dataset. Progressive finetuning and careful postprocessing are also key to the solution. Our two submissions scored 0.6344 and 0.6289 on private leaderboard, both ranking third place out of 736 teams.