Abstract:Speckle noise is generated due to the SAR imaging mechanism, which brings difficulties in SAR image interpretation. Hence, despeckling is a helpful step in SAR pre-processing. Nowadays, deep learning has been proved to be a progressive method for SAR image despeckling. Most deep learning methods for despeckling are based on supervised learning, which needs original SAR images and speckle-free SAR images to train the network. However, the speckle-free SAR images are generally not available. So, this issue was tackled by adding multiplicative noise to optical images synthetically for simulating speckled image. Therefore, there are following challenges in SAR image despeckling: (1) lack of speckle-free SAR image; (2) difficulty in keeping details such as edges and textures in heterogeneous areas. To address these issues, we propose a self-supervised SAR despeckling strategy that can be trained without speckle-free images. Firstly, the feasibility of SAR image despeckling without speckle-free images is proved theoretically. Then, the sub-sampler based on the adjacent-syntropy criteria is proposed. The training image pairs are generated by the sub-sampler from real-word SAR image to estimate the noise distribution. Furthermore, to make full use of training pairs, the parameter sharing convolutional neural networks are adopted. Finally, according to the characteristics of SAR images, a multi-feature loss function is proposed. The proposed loss function is composed of despeckling term, regular term and perception term, to constrain the gap between the generated paired images. The ability of edge and texture feature preserving is improved simultaneously. Finally, qualitative and quantitative experiments are validated on real-world SAR images, showing better performances than several advanced SAR image despeckling methods.