Abstract:Crop field detection is a critical component of precision agriculture, essential for optimizing resource allocation and enhancing agricultural productivity. This study introduces KonvLiNA, a novel framework that integrates Convolutional Kolmogorov-Arnold Networks (cKAN) with Nystr\"om attention mechanisms for effective crop field detection. Leveraging KAN adaptive activation functions and the efficiency of Nystr\"om attention in handling largescale data, KonvLiNA significantly enhances feature extraction, enabling the model to capture intricate patterns in complex agricultural environments. Experimental results on rice crop dataset demonstrate KonvLiNA superiority over state-of-the-art methods, achieving a 0.415 AP and 0.459 AR with the Swin-L backbone, outperforming traditional YOLOv8 by significant margins. Additionally, evaluation on the COCO dataset showcases competitive performance across small, medium, and large objects, highlighting KonvLiNA efficacy in diverse agricultural settings. This work highlights the potential of hybrid KAN and attention mechanisms for advancing precision agriculture through improved crop field detection and management.
Abstract:The recent emergence of hybrid models has introduced another transformative approach to solving computer vision tasks, slowly shifting away from conventional CNN (Convolutional Neural Network) and ViT (Vision Transformer). However, not enough effort has been made to efficiently combine these two approaches to improve capturing long-range dependencies prevalent in complex images. In this paper, we introduce iiANET (Inception Inspired Attention Network), an efficient hybrid model designed to capture long-range dependencies in complex images. The fundamental building block, iiABlock, integrates global 2D-MHSA (Multi-Head Self-Attention) with Registers, MBConv2 (MobileNetV2-based convolution), and dilated convolution in parallel, enabling the model to adeptly leverage self-attention for capturing long-range dependencies while utilizing MBConv2 for effective local-detail extraction and dilated convolution for efficiently expanding the kernel receptive field to capture more contextual information. Lastly, we serially integrate an ECANET (Efficient Channel Attention Network) at the end of each iiABlock to calibrate channel-wise attention for enhanced model performance. Extensive qualitative and quantitative comparative evaluation on various benchmarks demonstrates improved performance over some state-of-the-art models.