Abstract:Due to the complex interplay of light absorption and scattering in the underwater environment, underwater images experience significant degradation. This research presents a two-stage underwater image enhancement network called the Data-Driven and Physical Parameters Fusion Network (DPF-Net), which harnesses the robustness of physical imaging models alongside the generality and efficiency of data-driven methods. We first train a physical parameter estimate module using synthetic datasets to guarantee the trustworthiness of the physical parameters, rather than solely learning the fitting relationship between raw and reference images by the application of the imaging equation, as is common in prior studies. This module is subsequently trained in conjunction with an enhancement network, where the estimated physical parameters are integrated into a data-driven model within the embedding space. To maintain the uniformity of the restoration process amid underwater imaging degradation, we propose a physics-based degradation consistency loss. Additionally, we suggest an innovative weak reference loss term utilizing the entire dataset, which alleviates our model's reliance on the quality of individual reference images. Our proposed DPF-Net demonstrates superior performance compared to other benchmark methods across multiple test sets, achieving state-of-the-art results. The source code and pre-trained models are available on the project home page: https://github.com/OUCVisionGroup/DPF-Net.
Abstract:We introduce a novel vision-based framework for in-situ trunk identification and length measurement of sea cucumbers, which plays a crucial role in the monitoring of marine ranching resources and mechanized harvesting. To model sea cucumber trunk curves with varying degrees of bending, we utilize the parametric B\'{e}zier curve due to its computational simplicity, stability, and extensive range of transformation possibilities. Then, we propose an end-to-end unified framework that combines parametric B\'{e}zier curve modeling with the widely used You-Only-Look-Once (YOLO) pipeline, abbreviated as TISC-Net, and incorporates effective funnel activation and efficient multi-scale attention modules to enhance curve feature perception and learning. Furthermore, we propose incorporating trunk endpoint loss as an additional constraint to effectively mitigate the impact of endpoint deviations on the overall curve. Finally, by utilizing the depth information of pixels located along the trunk curve captured by a binocular camera, we propose accurately estimating the in-situ length of sea cucumbers through space curve integration. We established two challenging benchmark datasets for curve-based in-situ sea cucumber trunk identification. These datasets consist of over 1,000 real-world marine environment images of sea cucumbers, accompanied by B\'{e}zier format annotations. We conduct evaluation on SC-ISTI, for which our method achieves mAP50 above 0.9 on both object detection and trunk identification tasks. Extensive length measurement experiments demonstrate that the average absolute relative error is around 0.15.