Abstract:Restricted Boltzmann Machines are a class of undirected graphical models that play a key role in deep learning and unsupervised learning. In this study, we prove a phase transition phenomenon in the mixing time of the Gibbs sampler for a one-parameter Restricted Boltzmann Machine. Specifically, the mixing time varies logarithmically, polynomially, and exponentially with the number of vertices depending on whether the parameter $c$ is above, equal to, or below a critical value $c_\star\approx-5.87$. A key insight from our analysis is the link between the Gibbs sampler and a dynamical system, which we utilize to quantify the former based on the behavior of the latter. To study the critical case $c= c_\star$, we develop a new isoperimetric inequality for the sampler's stationary distribution by showing that the distribution is nearly log-concave.
Abstract:Mixing (or prior) density estimation is an important problem in machine learning and statistics, especially in empirical Bayes $g$-modeling where accurately estimating the prior is necessary for making good posterior inferences. In this paper, we propose neural-$g$, a new neural network-based estimator for $g$-modeling. Neural-$g$ uses a softmax output layer to ensure that the estimated prior is a valid probability density. Under default hyperparameters, we show that neural-$g$ is very flexible and capable of capturing many unknown densities, including those with flat regions, heavy tails, and/or discontinuities. In contrast, existing methods struggle to capture all of these prior shapes. We provide justification for neural-$g$ by establishing a new universal approximation theorem regarding the capability of neural networks to learn arbitrary probability mass functions. To accelerate convergence of our numerical implementation, we utilize a weighted average gradient descent approach to update the network parameters. Finally, we extend neural-$g$ to multivariate prior density estimation. We illustrate the efficacy of our approach through simulations and analyses of real datasets. A software package to implement neural-$g$ is publicly available at https://github.com/shijiew97/neuralG.