Abstract:We propose to address the task of causal structure learning from data in a supervised manner. Existing work on learning causal directions by supervised learning is restricted to learning pairwise relation, and not well suited for whole DAG discovery. We propose a novel approach of modeling the whole DAG structure discovery as a supervised learning. To fit the problem in hand, we propose to use permutation equivariant models that align well with the problem domain. We evaluate the proposed approach extensively on synthetic graphs of size 10,20,50,100 and real data, and show promising results compared with a variety of previous approaches.
Abstract:Machine learning models are vulnerable to adversarial examples. Iterative adversarial training has shown promising results against strong white-box attacks. However, adversarial training is very expensive, and every time a model needs to be protected, such expensive training scheme needs to be performed. In this paper, we propose to apply iterative adversarial training scheme to an external auto-encoder, which once trained can be used to protect other models directly. We empirically show that our model outperforms other purifying-based methods against white-box attacks, and transfers well to directly protect other base models with different architectures.