Abstract:Joint base station (BS) association and beam selection in multi-UAV aerial corridors constitutes a challenging radio resource management (RRM) problem. It is driven by high-dimensional action spaces, need for substantial overhead to acquire global channel state information (CSI), rapidly varying propagation channels, and stringent latency requirements. Conventional combinatorial optimization methods, while near-optimal, are computationally prohibitive for real-time operation in such dynamic environments. While learning-based approaches can mitigate computational complexity and CSI overhead, the need for extensive site-specific (SS) datasets for model training remains a key challenge. To address these challenges, we develop a Digital Twin (DT)-enabled two-stage optimization framework that couples physics-based beam gain modeling with DRL for scalable online decision-making. In the first stage, a channel twin (CT) is constructed using a high-fidelity ray-tracing solver with geo-spatial contexts, and network information to capture SS propagation characteristics, and dual annealing algorithm is employed to precompute optimal transmission beam directions. In the second stage, a Multi-Head Proximal Policy Optimization (MH-PPO) agent, equipped with a scalable multi-head actor-critic architecture, is trained on the DT-generated channel dataset to directly map complex channel and beam states to jointly execute UAV-BS-beam association decisions. The proposed PPO agent achieves a 44%-121% improvement over DQN and 249%-807% gain over traditional heuristic based optimization schemes in a dense UAV scenario, while reducing inference latency by several orders of magnitude. These results demonstrate that DT-driven training pipelines can deliver high-performance, low-latency RRM policies tailored to SS deployments suitable for real-time resource management in next-generation aerial corridor networks.
Abstract:THz band enabled large scale massive MIMO (M-MIMO) is considered as a key enabler for the 6G technology, given its enormous bandwidth and for its low latency connectivity. In the large-scale M-MIMO configuration, enlarged array aperture and small wavelengths of THz results in an amalgamation of both far field and near field paths, which makes tasks such as channel estimation for THz M-MIMO highly challenging. Moreover, at the THz transceiver, radio frequency (RF) impairments such as phase noise (PN) of the analog devices also leads to degradation in channel estimation performance. Classical estimators as well as traditional deep learning (DL) based algorithms struggle to maintain their robustness when performing for large scale antenna arrays i.e., M-MIMO, and when RF impairments are considered for practical usage. To effectively address this issue, it is crucial to utilize a neural network (NN) that has the ability to study the behaviors of the channel and RF impairment correlations, such as a recurrent neural network (RNN). The RF impairments act as sequential noise data which is subsequently incorporated with the channel data, leading to choose a specific type of RNN known as bidirectional long short-term memory (BiLSTM) which is followed by gated recurrent units (GRU) to process the sequential data. Simulation results demonstrate that our proposed model outperforms other benchmark approaches at various signal-to-noise ratio (SNR) levels.