Abstract:Machine learning (ML) algorithms, particularly attention-based transformer models, have become indispensable for analyzing the vast data generated by particle physics experiments like ATLAS and CMS at the CERN LHC. Particle Transformer (ParT), a state-of-the-art model, leverages particle-level attention to improve jet-tagging tasks, which are critical for identifying particles resulting from proton collisions. This study focuses on interpreting ParT by analyzing attention heat maps and particle-pair correlations on the $\eta$-$\phi$ plane, revealing a binary attention pattern where each particle attends to at most one other particle. At the same time, we observe that ParT shows varying focus on important particles and subjets depending on decay, indicating that the model learns traditional jet substructure observables. These insights enhance our understanding of the model's internal workings and learning process, offering potential avenues for improving the efficiency of transformer architectures in future high-energy physics applications.
Abstract:Extensive efforts have been made to boost the performance in the domain of language models by introducing various attention-based transformers. However, the inclusion of linear layers with large dimensions contributes to significant computational and memory overheads. The escalating computational demands of these models necessitate the development of various compression techniques to ensure their deployment on devices, particularly in resource-constrained environments. In this paper, we propose a novel compression methodology that dynamically determines the rank of each layer using a soft thresholding mechanism, which clips the singular values with a small magnitude in a differentiable form. This approach automates the decision-making process to identify the optimal degree of compression for each layer. We have successfully applied the proposed technique to attention-based architectures, including BERT for discriminative tasks and GPT2 and TinyLlama for generative tasks. Additionally, we have validated our method on Mamba, a recently proposed state-space model. Our experiments demonstrate that the proposed technique achieves a speed-up of 1.33X to 1.72X in the encoder/ decoder with a 50% reduction in total parameters.