Abstract:Online commerce relies heavily on user generated reviews to provide unbiased information about products that they have not physically seen. The importance of reviews has attracted multiple exploitative online behaviours and requires methods for monitoring and detecting reviews. We present a machine learning methodology for review detection and extraction, and demonstrate that it generalises for use across websites that were not contained in the training data. This method promises to drive applications for automatic detection and evaluation of reviews, regardless of their source. Furthermore, we showcase the versatility of our method by implementing and discussing three key applications for analysing reviews: Sentiment Inconsistency Analysis, which detects and filters out unreliable reviews based on inconsistencies between ratings and comments; Multi-language support, enabling the extraction and translation of reviews from various languages without relying on HTML scraping; and Fake review detection, achieved by integrating a trained NLP model to identify and distinguish between genuine and fake reviews.
Abstract:Wheat is one of the major staple crops across the globe. Therefore, it is mandatory to measure, maintain and improve the wheat quality for human consumption. Traditional wheat quality measurement methods are mostly invasive, destructive and limited to small samples of wheat. In a typical supply chain of wheat, there are many receival points where bulk wheat arrives, gets stored and forwarded as per the requirements. In this receival points, the application of traditional quality measurement methods is difficult and often very expensive. Therefore, there is a need for non-invasive, non-destructive real-time methods for wheat quality assessments. One such method that fulfils the above-mentioned criteria is hyperspectral imaging (HSI) for food quality measurement and it can also be applied to bulk samples. In this paper, we have investigated how HSI has been used in the literature for assessing stored wheat quality. So that the required information to implement real-time digital quality assessment methods at the different stages of Australian supply chain can be made available in a single and compact document.
Abstract:Motion modelling with block-based architecture has been widely used in video coding where a frame is divided into fixed-sized blocks that are motion compensated independently. This often leads to coding inefficiency as fixed-sized blocks hardly align with the object boundaries. Although hierarchical block-partitioning has been introduced to address this, the increased number of motion vectors limits the benefit. Recently, approximate segmentation of images with cuboidal partitioning has gained popularity. Not only are the variable-sized rectangular segments (cuboids) readily amenable to block-based image/video coding techniques, but they are also capable of aligning well with the object boundaries. This is because cuboidal partitioning is based on a homogeneity constraint, minimising the sum of squared errors (SSE). In this paper, we have investigated the potential of cuboids in motion modelling against the fixed-sized blocks used in scalable video coding. Specifically, we have constructed motion-compensated current frame using the cuboidal partitioning information of the anchor frame in a group-of-picture (GOP). The predicted current frame has then been used as the base layer while encoding the current frame as an enhancement layer using the scalable HEVC encoder. Experimental results confirm 6.71%-10.90% bitrate savings on 4K video sequences.
Abstract:Attention is a very popular and effective mechanism in artificial neural network-based sequence-to-sequence models. In this survey paper, a comprehensive review of the different attention models used in developing automatic speech recognition systems is provided. The paper focuses on the development and evolution of attention models for offline and streaming speech recognition within recurrent neural network- and Transformer- based architectures.