Abstract:Transformer architectures have become the standard neural network model for various machine learning applications including natural language processing and computer vision. However, the compute and memory requirements introduced by transformer models make them challenging to adopt for edge applications. Furthermore, fine-tuning pre-trained transformers (e.g., foundation models) is a common task to enhance the model's predictive performance on specific tasks/applications. Existing transformer accelerators are oblivious to complexities introduced by fine-tuning. In this paper, we propose the design of a three-dimensional (3D) heterogeneous architecture referred to as Atleus that incorporates heterogeneous computing resources specifically optimized to accelerate transformer models for the dual purposes of fine-tuning and inference. Specifically, Atleus utilizes non-volatile memory and systolic array for accelerating transformer computational kernels using an integrated 3D platform. Moreover, we design a suitable NoC to achieve high performance and energy efficiency. Finally, Atleus adopts an effective quantization scheme to support model compression. Experimental results demonstrate that Atleus outperforms existing state-of-the-art by up to 56x and 64.5x in terms of performance and energy efficiency respectively
Abstract:Transformers have revolutionized deep learning and generative modeling to enable unprecedented advancements in natural language processing tasks and beyond. However, designing hardware accelerators for executing transformer models is challenging due to the wide variety of computing kernels involved in the transformer architecture. Existing accelerators are either inadequate to accelerate end-to-end transformer models or suffer notable thermal limitations. In this paper, we propose the design of a three-dimensional heterogeneous architecture referred to as HeTraX specifically optimized to accelerate end-to-end transformer models. HeTraX employs hardware resources aligned with the computational kernels of transformers and optimizes both performance and energy. Experimental results show that HeTraX outperforms existing state-of-the-art by up to 5.6x in speedup and improves EDP by 14.5x while ensuring thermally feasibility.
Abstract:Resistive random-access memory (ReRAM)-based processing-in-memory (PIM) architecture is an attractive solution for training Graph Neural Networks (GNNs) on edge platforms. However, the immature fabrication process and limited write endurance of ReRAMs make them prone to hardware faults, thereby limiting their widespread adoption for GNN training. Further, the existing fault-tolerant solutions prove inadequate for effectively training GNNs in the presence of faults. In this paper, we propose a fault-aware framework referred to as FARe that mitigates the effect of faults during GNN training. FARe outperforms existing approaches in terms of both accuracy and timing overhead. Experimental results demonstrate that FARe framework can restore GNN test accuracy by 47.6% on faulty ReRAM hardware with a ~1% timing overhead compared to the fault-free counterpart.