Abstract:High spatial resolution wind data are essential for a wide range of applications in climate, oceanographic and meteorological studies. Large-scale spatial interpolation or downscaling of bivariate wind fields having velocity in two dimensions is a challenging task because wind data tend to be non-Gaussian with high spatial variability and heterogeneity. In spatial statistics, cokriging is commonly used for predicting bivariate spatial fields. However, the cokriging predictor is not optimal except for Gaussian processes. Additionally, cokriging is computationally prohibitive for large datasets. In this paper, we propose a method, called bivariate DeepKriging, which is a spatially dependent deep neural network (DNN) with an embedding layer constructed by spatial radial basis functions for bivariate spatial data prediction. We then develop a distribution-free uncertainty quantification method based on bootstrap and ensemble DNN. Our proposed approach outperforms the traditional cokriging predictor with commonly used covariance functions, such as the linear model of co-regionalization and flexible bivariate Mat\'ern covariance. We demonstrate the computational efficiency and scalability of the proposed DNN model, with computations that are, on average, 20 times faster than those of conventional techniques. We apply the bivariate DeepKriging method to the wind data over the Middle East region at 506,771 locations. The prediction performance of the proposed method is superior over the cokriging predictors and dramatically reduces computation time.
Abstract:Spatial processes observed in various fields, such as climate and environmental science, often occur on a large scale and demonstrate spatial nonstationarity. Fitting a Gaussian process with a nonstationary Mat\'ern covariance is challenging. Previous studies in the literature have tackled this challenge by employing spatial partitioning techniques to estimate the parameters that vary spatially in the covariance function. The selection of partitions is an important consideration, but it is often subjective and lacks a data-driven approach. To address this issue, in this study, we utilize the power of Convolutional Neural Networks (ConvNets) to derive subregions from the nonstationary data. We employ a selection mechanism to identify subregions that exhibit similar behavior to stationary fields. In order to distinguish between stationary and nonstationary random fields, we conducted training on ConvNet using various simulated data. These simulations are generated from Gaussian processes with Mat\'ern covariance models under a wide range of parameter settings, ensuring adequate representation of both stationary and nonstationary spatial data. We assess the performance of the proposed method with synthetic and real datasets at a large scale. The results revealed enhanced accuracy in parameter estimations when relying on ConvNet-based partition compared to traditional user-defined approaches.
Abstract:Gaussian processes (GP) and Kriging are widely used in traditional spatio-temporal mod-elling and prediction. These techniques typically presuppose that the data are observed from a stationary GP with parametric covariance structure. However, processes in real-world applications often exhibit non-Gaussianity and nonstationarity. Moreover, likelihood-based inference for GPs is computationally expensive and thus prohibitive for large datasets. In this paper we propose a deep neural network (DNN) based two-stage model for spatio-temporal interpolation and forecasting. Interpolation is performed in the first step, which utilizes a dependent DNN with the embedding layer constructed with spatio-temporal basis functions. For the second stage, we use Long-Short Term Memory (LSTM) and convolutional LSTM to forecast future observations at a given location. We adopt the quantile-based loss function in the DNN to provide probabilistic forecasting. Compared to Kriging, the proposed method does not require specifying covariance functions or making stationarity assumption, and is computationally efficient. Therefore, it is suitable for large-scale prediction of complex spatio-temporal processes. We apply our method to monthly $PM_{2.5}$ data at more than $200,000$ space-time locations from January 1999 to December 2022 for fast imputation of missing values and forecasts with uncertainties.