Abstract:Large Language Models (LLMs) can revolutionize how we deploy and operate Open Radio Access Networks (O-RAN) by enhancing network analytics, anomaly detection, and code generation and significantly increasing the efficiency and reliability of a plethora of O-RAN tasks. In this paper, we present ORAN-Bench-13K, the first comprehensive benchmark designed to evaluate the performance of Large Language Models (LLMs) within the context of O-RAN. Our benchmark consists of 13,952 meticulously curated multiple-choice questions generated from 116 O-RAN specification documents. We leverage a novel three-stage LLM framework, and the questions are categorized into three distinct difficulties to cover a wide spectrum of ORAN-related knowledge. We thoroughly evaluate the performance of several state-of-the-art LLMs, including Gemini, Chat-GPT, and Mistral. Additionally, we propose ORANSight, a Retrieval-Augmented Generation (RAG)-based pipeline that demonstrates superior performance on ORAN-Bench-13K compared to other tested closed-source models. Our findings indicate that current popular LLM models are not proficient in O-RAN, highlighting the need for specialized models. We observed a noticeable performance improvement when incorporating the RAG-based ORANSight pipeline, with a Macro Accuracy of 0.784 and a Weighted Accuracy of 0.776, which was on average 21.55% and 22.59% better than the other tested LLMs.
Abstract:Deep learning offers a promising solution to improve spectrum access techniques by utilizing data-driven approaches to manage and share limited spectrum resources for emerging applications. For several of these applications, the sensitive wireless data (such as spectrograms) are stored in a shared database or multistakeholder cloud environment and are therefore prone to privacy leaks. This paper aims to address such privacy concerns by examining the representative case study of shared database scenarios in 5G Open Radio Access Network (O-RAN) networks where we have a shared database within the near-real-time (near-RT) RAN intelligent controller. We focus on securing the data that can be used by machine learning (ML) models for spectrum sharing and interference mitigation applications without compromising the model and network performances. The underlying idea is to leverage a (i) Shuffling-based learnable encryption technique to encrypt the data, following which, (ii) employ a custom Vision transformer (ViT) as the trained ML model that is capable of performing accurate inferences on such encrypted data. The paper offers a thorough analysis and comparisons with analogous convolutional neural networks (CNN) as well as deeper architectures (such as ResNet-50) as baselines. Our experiments showcase that the proposed approach significantly outperforms the baseline CNN with an improvement of 24.5% and 23.9% for the percent accuracy and F1-Score respectively when operated on encrypted data. Though deeper ResNet-50 architecture is obtained as a slightly more accurate model, with an increase of 4.4%, the proposed approach boasts a reduction of parameters by 99.32%, and thus, offers a much-improved prediction time by nearly 60%.
Abstract:Optimal locomotion and efficient traversal of extraterrestrial rovers in dynamic terrains and environments is an important problem statement in the field of planetary science and geophysical systems. Designing a superlative and efficient architecture for the suspension mechanism of planetary rovers is a crucial step towards robust rovers. This paper focuses on the Rocker Bogie mechanism, a standard suspension methodology associated with foreign terrains. After scrutinizing the available previous literature and by leveraging various optimization and global minimization algorithms, this paper offers a novel study on mechanical design optimization of a rovers suspension mechanism. This paper presents extensive tests on Simulated Annealing, Genetic Algorithms, Swarm Intelligence techniques, Basin Hoping and Differential Evolution, while thoroughly assessing every related hyper parameter, to find utility driven solutions. We also assess Dual Annealing and subsidiary algorithms for the aforementioned task while maintaining an unbiased testing standpoint for ethical research. Computational efficiency and overall fitness are considered key valedictory parameters for assessing the related algorithms, emphasis is also given to variable input seeds to find the most suitable utility driven strategy. Simulated Annealing was obtained empirically to be the top performing heuristic strategy, with a fitness of 760, which was considerably superior to other algorithms and provided consistent performance across various input seeds and individual performance indicators.