Despite the transformative impact of Large Language Models (LLMs) across critical domains such as healthcare, customer service, and business marketing, their integration into Open Radio Access Networks (O-RAN) remains limited. This gap is primarily due to the absence of domain-specific foundational models, with existing solutions often relying on general-purpose LLMs that fail to address the unique challenges and technical intricacies of O-RAN. To bridge this gap, we introduce ORANSight-2.0 (O-RAN Insights), a pioneering initiative aimed at developing specialized foundational LLMs tailored for O-RAN. Built on 18 LLMs spanning five open-source LLM frameworks, ORANSight-2.0 fine-tunes models ranging from 1 to 70B parameters, significantly reducing reliance on proprietary, closed-source models while enhancing performance for O-RAN. At the core of ORANSight-2.0 is RANSTRUCT, a novel Retrieval-Augmented Generation (RAG) based instruction-tuning framework that employs two LLM agents to create high-quality instruction-tuning datasets. The generated dataset is then used to fine-tune the 18 pre-trained open-source LLMs via QLoRA. To evaluate ORANSight-2.0, we introduce srsRANBench, a novel benchmark designed for code generation and codebase understanding in the context of srsRAN, a widely used 5G O-RAN stack. We also leverage ORANBench13K, an existing benchmark for assessing O-RAN-specific knowledge. Our comprehensive evaluations demonstrate that ORANSight-2.0 models outperform general-purpose and closed-source models, such as ChatGPT-4o and Gemini, by 5.421% on ORANBench and 18.465% on srsRANBench, achieving superior performance while maintaining lower computational and energy costs. We also experiment with RAG-augmented variants of ORANSight-2.0 LLMs and thoroughly evaluate their energy characteristics, demonstrating costs for training, standard inference, and RAG-augmented inference.