Abstract:We introduce and experimentally test a machine-learning-based method for ranking logically equivalent quantum circuits based on expected performance estimates derived from a training procedure conducted on real hardware. We apply our method to the problem of layout selection, in which abstracted qubits are assigned to physical qubits on a given device. Circuit measurements performed on IBM hardware indicate that the maximum and median fidelities of logically equivalent layouts can differ by an order of magnitude. We introduce a circuit score used for ranking that is parameterized in terms of a physics-based, phenomenological error model whose parameters are fit by training a ranking-loss function over a measured dataset. The dataset consists of quantum circuits exhibiting a diversity of structures and executed on IBM hardware, allowing the model to incorporate the contextual nature of real device noise and errors without the need to perform an exponentially costly tomographic protocol. We perform model training and execution on the 16-qubit ibmq_guadalupe device and compare our method to two common approaches: random layout selection and a publicly available baseline called Mapomatic. Our model consistently outperforms both approaches, predicting layouts that exhibit lower noise and higher performance. In particular, we find that our best model leads to a $1.8\times$ reduction in selection error when compared to the baseline approach and a $3.2\times$ reduction when compared to random selection. Beyond delivering a new form of predictive quantum characterization, verification, and validation, our results reveal the specific way in which context-dependent and coherent gate errors appear to dominate the divergence from performance estimates extrapolated from simple proxy measures.
Abstract:Gate-defined quantum dots are a promising candidate system to realize scalable, coupled qubit systems and serve as a fundamental building block for quantum computers. However, present-day quantum dot devices suffer from imperfections that must be accounted for, which hinders the characterization, tuning, and operation process. Moreover, with an increasing number of quantum dot qubits, the relevant parameter space grows sufficiently to make heuristic control infeasible. Thus, it is imperative that reliable and scalable autonomous tuning approaches are developed. In this report, we outline current challenges in automating quantum dot device tuning and operation with a particular focus on datasets, benchmarking, and standardization. We also present ideas put forward by the quantum dot community on how to overcome them.