Abstract:Accurate demand forecasts can help on-line retail organizations better plan their supply-chain processes. The challenge, however, is the large number of associative factors that result in large, non-stationary shifts in demand, which traditional time series and regression approaches fail to model. In this paper, we propose a Neural Network architecture called AR-MDN, that simultaneously models associative factors, time-series trends and the variance in the demand. We first identify several causal features and use a combination of feature embeddings, MLP and LSTM to represent them. We then model the output density as a learned mixture of Gaussian distributions. The AR-MDN can be trained end-to-end without the need for additional supervision. We experiment on a dataset of an year's worth of data over tens-of-thousands of products from Flipkart. The proposed architecture yields a significant improvement in forecasting accuracy when compared with existing alternatives.
Abstract:In this paper, we present a unified end-to-end approach to build a large scale Visual Search and Recommendation system for e-commerce. Previous works have targeted these problems in isolation. We believe a more effective and elegant solution could be obtained by tackling them together. We propose a unified Deep Convolutional Neural Network architecture, called VisNet, to learn embeddings to capture the notion of visual similarity, across several semantic granularities. We demonstrate the superiority of our approach for the task of image retrieval, by comparing against the state-of-the-art on the Exact Street2Shop dataset. We then share the design decisions and trade-offs made while deploying the model to power Visual Recommendations across a catalog of 50M products, supporting 2K queries a second at Flipkart, India's largest e-commerce company. The deployment of our solution has yielded a significant business impact, as measured by the conversion-rate.