Abstract:Several recent high-impact studies leverage large hospital-owned electrocardiographic (ECG) databases to model and predict patient mortality. MIMIC-IV, released September 2023, is the first comparable public dataset and includes 800,000 ECGs from a U.S. hospital system. Previously, the largest public ECG dataset was Code-15, containing 345,000 ECGs collected during routine care in Brazil. These datasets now provide an excellent resource for a broader audience to explore ECG survival modeling. Here, we benchmark survival model performance on Code-15 and MIMIC-IV with two neural network architectures, compare four deep survival modeling approaches to Cox regressions trained on classifier outputs, and evaluate performance at one to ten years. Our results yield AUROC and concordance scores comparable to past work (circa 0.8) and reasonable AUPRC scores (MIMIC-IV: 0.4-0.5, Code-15: 0.05-0.13) considering the fraction of ECG samples linked to a mortality (MIMIC-IV: 27\%, Code-15: 4\%). When evaluating models on the opposite dataset, AUROC and concordance values drop by 0.1-0.15, which may be due to cohort differences. All code and results are made public.
Abstract:Including human analysis has the potential to positively affect the robustness of Deep Neural Networks and is relatively unexplored in the Adversarial Machine Learning literature. Neural network visual explanation maps have been shown to be prone to adversarial attacks. Further research is needed in order to select robust visualizations of explanations for the image analyst to evaluate a given model. These factors greatly impact Human-In-The-Loop (HITL) evaluation tools due to their reliance on adversarial images, including explanation maps and measurements of robustness. We believe models of human visual attention may improve interpretability and robustness of human-machine imagery analysis systems. Our challenge remains, how can HITL evaluation be robust in this adversarial landscape?