Abstract:This paper introduces a novel approach, evolutionary multi-objective optimisation for fairness-aware self-adjusting memory classifiers, designed to enhance fairness in machine learning algorithms applied to data stream classification. With the growing concern over discrimination in algorithmic decision-making, particularly in dynamic data stream environments, there is a need for methods that ensure fair treatment of individuals across sensitive attributes like race or gender. The proposed approach addresses this challenge by integrating the strengths of the self-adjusting memory K-Nearest-Neighbour algorithm with evolutionary multi-objective optimisation. This combination allows the new approach to efficiently manage concept drift in streaming data and leverage the flexibility of evolutionary multi-objective optimisation to maximise accuracy and minimise discrimination simultaneously. We demonstrate the effectiveness of the proposed approach through extensive experiments on various datasets, comparing its performance against several baseline methods in terms of accuracy and fairness metrics. Our results show that the proposed approach maintains competitive accuracy and significantly reduces discrimination, highlighting its potential as a robust solution for fairness-aware data stream classification. Further analyses also confirm the effectiveness of the strategies to trigger evolutionary multi-objective optimisation and adapt classifiers in the proposed approach.
Abstract:Business optimisation is the process of finding and implementing efficient and cost-effective means of operation to bring a competitive advantage for businesses. Synthesizing problem formulations is an integral part of business optimisation which is centred around human expertise, thus with a high potential of becoming a bottleneck. With the recent advancements in Large Language Models (LLMs), human expertise needed in problem formulation can potentially be minimized using Artificial Intelligence (AI). However, developing a LLM for problem formulation is challenging, due to training data requirements, token limitations, and the lack of appropriate performance metrics in LLMs. To minimize the requirement of large training data, considerable attention has recently been directed towards fine-tuning pre-trained LLMs for downstream tasks, rather than training a LLM from scratch for a specific task. In this paper, we adopt this approach and propose an AI-Copilot for business optimisation by fine-tuning a pre-trained LLM for problem formulation. To address token limitations, we introduce modularization and prompt engineering techniques to synthesize complex problem formulations as modules that fit into the token limits of LLMs. In addition, we design performance evaluation metrics that are more suitable for assessing the accuracy and quality of problem formulations compared to existing evaluation metrics. Experiment results demonstrate that our AI-Copilot can synthesize complex and large problem formulations for a typical business optimisation problem in production scheduling.