Abstract:Detecting and quantifying bone changes in micro-CT scans of rodents is a common task in preclinical drug development studies. However, this task is manual, time-consuming and subject to inter- and intra-observer variability. In 2024, Anonymous Company organized an internal challenge to develop models for automatic bone quantification. We prepared and annotated a high-quality dataset of 3D $\mu$CT bone scans from $83$ mice. The challenge attracted over $80$ AI scientists from around the globe who formed $23$ teams. The participants were tasked with developing a solution to identify the plane where the bone growth happens, which is essential for fully automatic segmentation of trabecular bone. As a result, six computer vision solutions were developed that can accurately identify the location of the growth plate plane. The solutions achieved the mean absolute error of $1.91\pm0.87$ planes from the ground truth on the test set, an accuracy level acceptable for practical use by a radiologist. The annotated 3D scans dataset along with the six solutions and source code, is being made public, providing researchers with opportunities to develop and benchmark their own approaches. The code, trained models, and the data will be shared.
Abstract:The creation of in-silico datasets can expand the utility of existing annotations to new domains with different staining patterns in computational pathology. As such, it has the potential to significantly lower the cost associated with building large and pixel precise datasets needed to train supervised deep learning models. We propose a novel approach for the generation of in-silico immunohistochemistry (IHC) images by disentangling morphology specific IHC stains into separate image channels in immunofluorescence (IF) images. The proposed approach qualitatively and quantitatively outperforms baseline methods as proven by training nucleus segmentation models on the created in-silico datasets.