Abstract:Despite the increasing adoption of Deep Reinforcement Learning (DRL) for Autonomous Surface Vehicles (ASVs), there still remain challenges limiting real-world deployment. In this paper, we first integrate buoyancy and hydrodynamics models into a modern Reinforcement Learning framework to reduce training time. Next, we show how system identification coupled with domain randomization improves the RL agent performance and narrows the sim-to-real gap. Real-world experiments for the task of capturing floating waste show that our approach lowers energy consumption by 13.1\% while reducing task completion time by 7.4\%. These findings, supported by sharing our open-source implementation, hold the potential to impact the efficiency and versatility of ASVs, contributing to environmental conservation efforts.
Abstract:This paper outlines a roadmap to effectively leverage shared mental models in multi-robot, multi-stakeholder scenarios, drawing on experiences from the BugWright2 project. The discussion centers on an autonomous multi-robot systems designed for ship inspection and maintenance. A significant challenge in the development and implementation of this system is the calibration of trust. To address this, the paper proposes that trust calibration can be managed and optimized through the creation and continual updating of shared and accurate mental models of the robots. Strategies to promote these mental models, including cross-training, briefings, debriefings, and task-specific elaboration and visualization, are examined. Additionally, the crucial role of an adaptable, distributed, and well-structured user interface (UI) is discussed.