Abstract:Binary Classification plays an important role in machine learning. For linear classification, SVM is the optimal binary classification method. For nonlinear classification, the SVM algorithm needs to complete the classification task by using the kernel function. Although the SVM algorithm with kernel function is very effective, the selection of kernel function is empirical, which means that the kernel function may not be optimal. Therefore, it is worth studying how to obtain an optimal binary classifier. In this paper, the problem of finding the optimal binary classifier is considered as a variational problem. We design the objective function of this variational problem through the max-min problem of the (Euclidean) distance between two classes. For linear classification, it can be deduced that SVM is a special case of this variational problem framework. For Euclidean distance, it is proved that the proposed variational problem has some limitations for nonlinear classification. Therefore, how to design a more appropriate objective function to find the optimal binary classifier is still an open problem. Further, it's discussed some challenges and problems in finding the optimal classifier.
Abstract:Synthesizing pseudo samples is currently the most effective way to solve the Generalized Zero Shot Learning (GZSL) problem. Most models achieve competitive performance but still suffer from two problems: (1) Feature confounding, the overall representations confound task-correlated and task-independent features, and existing models disentangle them in a generative way, but they are unreasonable to synthesize reliable pseudo samples with limited samples; (2) Distribution uncertainty, that massive data is needed when existing models synthesize samples from the uncertain distribution, which causes poor performance in limited samples of seen classes. In this paper, we propose a non-generative model to address these problems correspondingly in two modules: (1) Task-correlated feature disentanglement, to exclude the task-correlated features from task-independent ones by adversarial learning of domain adaption towards reasonable synthesis; (2) Controllable pseudo sample synthesis, to synthesize edge-pseudo and center-pseudo samples with certain characteristics towards more diversity generated and intuitive transfer. In addation, to describe the new scene that is the limit seen class samples in the training process, we further formulate a new ZSL task named the 'Few-shot Seen class and Zero-shot Unseen class learning' (FSZU). Extensive experiments on four benchmarks verify that the proposed method is competitive in the GZSL and the FSZU tasks.