Abstract:In this paper, we propose a rule-based engine composed of high quality and interpretable regular expressions for medical text classification. The regular expressions are auto generated by a constructive heuristic method and optimized using a Pool-based Simulated Annealing (PSA) approach. Although existing Deep Neural Network (DNN) methods present high quality performance in most Natural Language Processing (NLP) applications, the solutions are regarded as uninterpretable black boxes to humans. Therefore, rule-based methods are often introduced when interpretable solutions are needed, especially in the medical field. However, the construction of regular expressions can be extremely labor-intensive for large data sets. This research aims to reduce the manual efforts while maintaining high-quality solutions
Abstract:Internet hospital is a rising business thanks to recent advances in mobile web technology and high demand of health care services. Online medical services become increasingly popular and active. According to US data in 2018, 80 percent of internet users have asked health-related questions online. Numerous data is generated in unprecedented speed and scale. Those representative questions and answers in medical fields are valuable raw data sources for medical data mining. Automated machine interpretation on those sheer amount of data gives an opportunity to assist doctors to answer frequently asked medical-related questions from the perspective of information retrieval and machine learning approaches. In this work, we propose a novel two-stage framework for the semantic matching of query-level medical questions.