Abstract:The capabilities of super-resolution reconstruction (SRR)---techniques for enhancing image spatial resolution---have been recently improved significantly by the use of deep convolutional neural networks. Commonly, such networks are learned using huge training sets composed of original images alongside their low-resolution counterparts, obtained with bicubic downsampling. In this paper, we investigate how the SRR performance is influenced by the way such low-resolution training data are obtained, which has not been explored up to date. Our extensive experimental study indicates that the training data characteristics have a large impact on the reconstruction accuracy, and the widely-adopted approach is not the most effective for dealing with satellite images. Overall, we argue that developing better training data preparation routines may be pivotal in making SRR suitable for real-world applications.
Abstract:Super-resolution reconstruction (SRR) is a process aimed at enhancing spatial resolution of images, either from a single observation, based on the learned relation between low and high resolution, or from multiple images presenting the same scene. SRR is particularly valuable, if it is infeasible to acquire images at desired resolution, but many images of the same scene are available at lower resolution---this is inherent to a variety of remote sensing scenarios. Recently, we have witnessed substantial improvement in single-image SRR attributed to the use of deep neural networks for learning the relation between low and high resolution. Importantly, deep learning has not been exploited for multiple-image SRR, which benefits from information fusion and in general allows for achieving higher reconstruction accuracy. In this letter, we introduce a new method which combines the advantages of multiple-image fusion with learning the low-to-high resolution mapping using deep networks. The reported experimental results indicate that our algorithm outperforms the state-of-the-art SRR methods, including these that operate from a single image, as well as those that perform multiple-image fusion.