Abstract:The ability to perform different skills can encourage agents to explore. In this work, we aim to construct a set of diverse skills which uniformly cover the state space. We propose a formalization of this search for diverse skills, building on a previous definition based on the mutual information between states and skills. We consider the distribution of states reached by a policy conditioned on each skill and leverage the successor state measure to maximize the difference between these skill distributions. We call this approach LEADS: Learning Diverse Skills through Successor States. We demonstrate our approach on a set of maze navigation and robotic control tasks which show that our method is capable of constructing a diverse set of skills which exhaustively cover the state space without relying on reward or exploration bonuses. Our findings demonstrate that this new formalization promotes more robust and efficient exploration by combining mutual information maximization and exploration bonuses.
Abstract:When searching for policies, reward-sparse environments often lack sufficient information about which behaviors to improve upon or avoid. In such environments, the policy search process is bound to blindly search for reward-yielding transitions and no early reward can bias this search in one direction or another. A way to overcome this is to use intrinsic motivation in order to explore new transitions until a reward is found. In this work, we use a recently proposed definition of intrinsic motivation, Curiosity, in an evolutionary policy search method. We propose Curiosity-ES, an evolutionary strategy adapted to use Curiosity as a fitness metric. We compare Curiosity with Novelty, a commonly used diversity metric, and find that Curiosity can generate higher diversity over full episodes without the need for an explicit diversity criterion and lead to multiple policies which find reward.