Abstract:The existing lensless compressive camera ($\text{L}^2\text{C}^2$)~\cite{Huang13ICIP} suffers from low capture rates, resulting in low resolution images when acquired over a short time. In this work, we propose a new regime to mitigate these drawbacks. We replace the global-based compressive sensing used in the existing $\text{L}^2\text{C}^2$ by the local block (patch) based compressive sensing. We use a single sensor for each block, rather than for the entire image, thus forming a multiple but spatially parallel sensor $\text{L}^2\text{C}^2$. This new camera retains the advantages of existing $\text{L}^2\text{C}^2$ while leading to the following additional benefits: 1) Since each block can be very small, {\em e.g.}$~8\times 8$ pixels, we only need to capture $\sim 10$ measurements to achieve reasonable reconstruction. Therefore the capture time can be reduced significantly. 2) The coding patterns used in each block can be the same, therefore the sensing matrix is only of the block size compared to the entire image size in existing $\text{L}^2\text{C}^2$. This saves the memory requirement of the sensing matrix as well as speeds up the reconstruction. 3) Patch based image reconstruction is fast and since real time stitching algorithms exist, we can perform real time reconstruction. 4) These small blocks can be integrated to any desirable number, leading to ultra high resolution images while retaining fast capture rate and fast reconstruction. We develop multiple geometries of this block-wise $\text{L}^2\text{C}^2$ in this paper. We have built prototypes of the proposed block-wise $\text{L}^2\text{C}^2$ and demonstrated excellent results of real data.
Abstract:We develop a lensless compressive imaging architecture, which consists of an aperture assembly and a single sensor, without using any lens. An anytime algorithm is proposed to reconstruct images from the compressive measurements; the algorithm produces a sequence of solutions that monotonically converge to the true signal (thus, anytime). The algorithm is developed based on the sparsity of local overlapping patches (in the transformation domain) and state-of-the-art results have been obtained. Experiments on real data demonstrate that encouraging results are obtained by measuring about 10% (of the image pixels) compressive measurements. The reconstruction results of the proposed algorithm are compared with the JPEG compression (based on file sizes) and the reconstructed image quality is close to the JPEG compression, in particular at a high compression rate.
Abstract:We analyze the signal to noise ratio (SNR) in a recently proposed lensless compressive imaging architecture. The architecture consists of a sensor of a single detector element and an aperture assembly of an array of aperture elements, each of which has a programmable transmittance. This lensless compressive imaging architecture can be used in conjunction with compressive sensing to capture images in a compressed form of compressive measurements. In this paper, we perform noise analysis of this lensless compressive imaging architecture and compare it with pinhole aperture imaging and lens aperture imaging. We will show that the SNR in the lensless compressive imaging is independent of the image resolution, while that in either pinhole aperture imaging or lens aperture imaging decreases as the image resolution increases. Consequently, the SNR in the lensless compressive imaging can be much higher if the image resolution is large enough.
Abstract:We analyze the signal to noise ratio (SNR) in a lensless compressive imaging (LCI) architecture. The architecture consists of a sensor of a single detecting element and an aperture assembly of an array of programmable elements. LCI can be used in conjunction with compressive sensing to capture images in a compressed form of compressive measurements. In this paper, we perform SNR analysis of the LCI and compare it with imaging with a pinhole or a lens. We will show that the SNR in the LCI is independent of the image resolution, while the SNR in either pinhole aperture imaging or lens aperture imaging decreases as the image resolution increases. Consequently, the SNR in the LCI is much higher if the image resolution is large enough.
Abstract:Multi-view images are acquired by a lensless compressive imaging architecture, which consists of an aperture assembly and multiple sensors. The aperture assembly consists of a two dimensional array of aperture elements whose transmittance can be individually controlled to implement a compressive sensing matrix. For each transmittance pattern of the aperture assembly, each of the sensors takes a measurement. The measurement vectors from the multiple sensors represent multi-view images of the same scene. We present theoretical framework for multi-view reconstruction and experimental results for enhancing quality of image using multi-view.
Abstract:In this paper, we propose a lensless compressive imaging architecture. The architecture consists of two components, an aperture assembly and a sensor. No lens is used. The aperture assembly consists of a two dimensional array of aperture elements. The transmittance of each aperture element is independently controllable. The sensor is a single detection element. A compressive sensing matrix is implemented by adjusting the transmittance of the individual aperture elements according to the values of the sensing matrix. The proposed architecture is simple and reliable because no lens is used. The architecture can be used for capturing images of visible and other spectra such as infrared, or millimeter waves, in surveillance applications for detecting anomalies or extracting features such as speed of moving objects. Multiple sensors may be used with a single aperture assembly to capture multi-view images simultaneously. A prototype was built by using a LCD panel and a photoelectric sensor for capturing images of visible spectrum.
Abstract:A new video coding method based on compressive sampling is proposed. In this method, a video is coded using compressive measurements on video cubes. Video reconstruction is performed by minimization of total variation (TV) of the pixelwise DCT coefficients along the temporal direction. A new reconstruction algorithm is developed from TVAL3, an efficient TV minimization algorithm based on the alternating minimization and augmented Lagrangian methods. Video coding with this method is inherently scalable, and has applications in mobile broadcast.
Abstract:In this paper, we propose a lensless compressive sensing imaging architecture. The architecture consists of two components, an aperture assembly and a sensor. No lens is used. The aperture assembly consists of a two dimensional array of aperture elements. The transmittance of each aperture element is independently controllable. The sensor is a single detection element, such as a single photo-conductive cell. Each aperture element together with the sensor defines a cone of a bundle of rays, and the cones of the aperture assembly define the pixels of an image. Each pixel value of an image is the integration of the bundle of rays in a cone. The sensor is used for taking compressive measurements. Each measurement is the integration of rays in the cones modulated by the transmittance of the aperture elements. A compressive sensing matrix is implemented by adjusting the transmittance of the individual aperture elements according to the values of the sensing matrix. The proposed architecture is simple and reliable because no lens is used. Furthermore, the sharpness of an image from our device is only limited by the resolution of the aperture assembly, but not affected by blurring due to defocus. The architecture can be used for capturing images of visible lights, and other spectra such as infrared, or millimeter waves. Such devices may be used in surveillance applications for detecting anomalies or extracting features such as speed of moving objects. Multiple sensors may be used with a single aperture assembly to capture multi-view images simultaneously. A prototype was built by using a LCD panel and a photoelectric sensor for capturing images of visible spectrum.