Abstract:Neural architecture search (NAS) has been studied extensively and has grown to become a research field with substantial impact. While classical single-objective NAS searches for the architecture with the best performance, multi-objective NAS considers multiple objectives that should be optimized simultaneously, e.g., minimizing resource usage along the validation error. Although considerable progress has been made in the field of multi-objective NAS, we argue that there is some discrepancy between the actual optimization problem of practical interest and the optimization problem that multi-objective NAS tries to solve. We resolve this discrepancy by formulating the multi-objective NAS problem as a quality diversity optimization (QDO) problem and introduce three quality diversity NAS optimizers (two of them belonging to the group of multifidelity optimizers), which search for high-performing yet diverse architectures that are optimal for application-specific niches, e.g., hardware constraints. By comparing these optimizers to their multi-objective counterparts, we demonstrate that quality diversity NAS in general outperforms multi-objective NAS with respect to quality of solutions and efficiency. We further show how applications and future NAS research can thrive on QDO.
Abstract:Quality Diversity (QD) algorithms such as MAP-Elites are a class of optimisation techniques that attempt to find a set of high-performing points from an objective function while enforcing behavioural diversity of the points over one or more interpretable, user chosen, feature functions. In this paper we propose the Bayesian Optimisation of Elites (BOP-Elites) algorithm that uses techniques from Bayesian Optimisation to explicitly model both quality and diversity with Gaussian Processes. By considering user defined regions of the feature space as 'niches' our task is to find the optimal solution in each niche. We propose a novel acquisition function to intelligently choose new points that provide the highest expected improvement to the ensemble problem of identifying the best solution in every niche. In this way each function evaluation enriches our modelling and provides insight to the whole problem, naturally balancing exploration and exploitation of the search space. The resulting algorithm is very effective in identifying the parts of the search space that belong to a niche in feature space, and finding the optimal solution in each niche. It is also significantly more sample efficient than simpler benchmark approaches. BOP-Elites goes further than existing QD algorithms by quantifying the uncertainty around our predictions and offering additional illumination of the search space through surrogate models.