Abstract:Bayesian optimization is used in many areas of AI for the optimization of black-box processes and has achieved impressive improvements of the state of the art for a lot of applications. It intelligently explores large and complex design spaces while minimizing the number of evaluations of the expensive underlying process to be optimized. Materials science considers the problem of optimizing materials' properties given a large design space that defines how to synthesize or process them, with evaluations requiring expensive experiments or simulations -- a very similar setting. While Bayesian optimization is also a popular approach to tackle such problems, there is almost no overlap between the two communities that are investigating the same concepts. We present a survey of Bayesian optimization approaches in materials science to increase cross-fertilization and avoid duplication of work. We highlight common challenges and opportunities for joint research efforts.
Abstract:A lot of technological advances depend on next-generation materials, such as graphene, which enables a raft of new applications, for example better electronics. Manufacturing such materials is often difficult; in particular, producing graphene at scale is an open problem. We provide a series of datasets that describe the optimization of the production of laser-induced graphene, an established manufacturing method that has shown great promise. We pose three challenges based on the datasets we provide -- modeling the behavior of laser-induced graphene production with respect to parameters of the production process, transferring models and knowledge between different precursor materials, and optimizing the outcome of the transformation over the space of possible production parameters. We present illustrative results, along with the code used to generate them, as a starting point for interested users. The data we provide represents an important real-world application of machine learning; to the best of our knowledge, no similar datasets are available.