Abstract:Multimodal Person Reidentification is gaining popularity in the research community due to its effectiveness compared to counter-part unimodal frameworks. However, the bottleneck for multimodal deep learning is the need for a large volume of multimodal training examples. Data augmentation techniques such as cropping, flipping, rotation, etc. are often employed in the image domain to improve the generalization of deep learning models. Augmenting in other modalities than images, such as text, is challenging and requires significant computational resources and external data sources. In this study, we investigate the effectiveness of two computer vision data augmentation techniques: cutout and cutmix, for text augmentation in multi-modal person re-identification. Our approach merges these two augmentation strategies into one strategy called CutMixOut which involves randomly removing words or sub-phrases from a sentence (Cutout) and blending parts of two or more sentences to create diverse examples (CutMix) with a certain probability assigned to each operation. This augmentation was implemented at inference time without any prior training. Our results demonstrate that the proposed technique is simple and effective in improving the performance on multiple multimodal person re-identification benchmarks.