Abstract:Large Language Models (LLMs) are poised to play an increasingly important role in our lives, providing assistance across a wide array of tasks. In the geospatial domain, LLMs have demonstrated the ability to answer generic questions, such as identifying a country's capital; nonetheless, their utility is hindered when it comes to answering fine-grained questions about specific places, such as grocery stores or restaurants, which constitute essential aspects of people's everyday lives. This is mainly because the places in our cities haven't been systematically fed into LLMs, so as to understand and memorize them. This study introduces a novel framework for fine-tuning a pre-trained model on city-specific data, to enable it to provide accurate recommendations, while minimizing hallucinations. We share our model, LAMP, and the data used to train it. We conduct experiments to analyze its ability to correctly retrieving spatial objects, and compare it to well-known open- and closed- source language models, such as GPT-4. Finally, we explore its emerging capabilities through a case study on day planning.
Abstract:Pre-trained Foundation Models (PFMs) have ushered in a paradigm-shift in Artificial Intelligence, due to their ability to learn general-purpose representations that can be readily employed in a wide range of downstream tasks. While PFMs have been successfully adopted in various fields such as Natural Language Processing and Computer Vision, their capacity in handling geospatial data and answering urban questions remains limited. This can be attributed to the intrinsic heterogeneity of geospatial data, which encompasses different data types, including points, segments and regions, as well as multiple information modalities, such as a spatial position, visual characteristics and textual annotations. The proliferation of Volunteered Geographic Information initiatives, and the ever-increasing availability of open geospatial data sources, like OpenStreetMap, which is freely accessible globally, unveil a promising opportunity to bridge this gap. In this paper, we present CityFM, a self-supervised framework to train a foundation model within a selected geographical area of interest, such as a city. CityFM relies solely on open data from OSM, and produces multimodal representations of entities of different types, incorporating spatial, visual, and textual information. We analyse the entity representations generated using our foundation models from a qualitative perspective, and conduct quantitative experiments on road, building, and region-level downstream tasks. We compare its results to algorithms tailored specifically for the respective applications. In all the experiments, CityFM achieves performance superior to, or on par with, the baselines.