Abstract:Assurance Cases (ACs) are an established approach in safety engineering to argue quality claims in a structured way. In the context of quality assurance for Machine Learning (ML)-based software components, ACs are also being discussed and appear promising. Tools for operationalizing ACs do exist, yet mainly focus on supporting safety engineers on the system level. However, assuring the quality of an ML component within the system is commonly the responsibility of data scientists, who are usually less familiar with these tools. To address this gap, we propose a framework to support the operationalization of ACs for ML components based on technologies that data scientists use on a daily basis: Python and Jupyter Notebook. Our aim is to make the process of creating ML-related evidence in ACs more effective. Results from the application of the framework, documented through notebooks, can be integrated into existing AC tools. We illustrate the application of the framework on an example excerpt concerned with the quality of the test data.
Abstract:As the use of Artificial Intelligence (AI) components in cyber-physical systems is becoming more common, the need for reliable system architectures arises. While data-driven models excel at perception tasks, model outcomes are usually not dependable enough for safety-critical applications. In this work,we present a timeseries-aware uncertainty wrapper for dependable uncertainty estimates on timeseries data. The uncertainty wrapper is applied in combination with information fusion over successive model predictions in time. The application of the uncertainty wrapper is demonstrated with a traffic sign recognition use case. We show that it is possible to increase model accuracy through information fusion and additionally increase the quality of uncertainty estimates through timeseries-aware input quality features.
Abstract:Outcomes of data-driven AI models cannot be assumed to be always correct. To estimate the uncertainty in these outcomes, the uncertainty wrapper framework has been proposed, which considers uncertainties related to model fit, input quality, and scope compliance. Uncertainty wrappers use a decision tree approach to cluster input quality related uncertainties, assigning inputs strictly to distinct uncertainty clusters. Hence, a slight variation in only one feature may lead to a cluster assignment with a significantly different uncertainty. Our objective is to replace this with an approach that mitigates hard decision boundaries of these assignments while preserving interpretability, runtime complexity, and prediction performance. Five approaches were selected as candidates and integrated into the uncertainty wrapper framework. For the evaluation based on the Brier score, datasets for a pedestrian detection use case were generated using the CARLA simulator and YOLOv3. All integrated approaches achieved a softening, i.e., smoothing, of uncertainty estimation. Yet, compared to decision trees, they are not so easy to interpret and have higher runtime complexity. Moreover, some components of the Brier score impaired while others improved. Most promising regarding the Brier score were random forests. In conclusion, softening hard decision tree boundaries appears to be a trade-off decision.