Abstract:The absence of well-structured large datasets in medical computer vision results in decreased performance of automated systems and, especially, of deep learning models. Domain generalization techniques aim to approach unknown domains from a single data source. In this paper we introduce a novel framework, named CompStyle, which leverages style transfer and adversarial training, along with high-level input complexity augmentation to effectively expand the domain space and address unknown distributions. State-of-the-art style transfer methods depend on the existence of subdomains within the source dataset. However, this can lead to an inherent dataset bias in the image creation. Input-level augmentation can provide a solution to this problem by widening the domain space in the source dataset and boost performance on out-of-domain distributions. We provide results from experiments on semantic segmentation on prostate data and corruption robustness on cardiac data which demonstrate the effectiveness of our approach. Our method increases performance in both tasks, without added cost to training time or resources.
Abstract:The growing availability of digitized art collections has created the need to manage, analyze and categorize large amounts of data related to abstract concepts, highlighting a demanding problem of computer science and leading to new research perspectives. Advances in artificial intelligence and neural networks provide the right tools for this challenge. The analysis of artworks to extract features useful in certain works is at the heart of the era. In the present work, we approach the problem of painter recognition in a set of digitized paintings, derived from the WikiArt repository, using transfer learning to extract the appropriate features and classical machine learning methods to evaluate the result. Through the testing of various models and their fine tuning we came to the conclusion that RegNet performs better in exporting features, while SVM makes the best classification of images based on the painter with a performance of up to 85%. Also, we introduced a new large dataset for painting recognition task including 62 artists achieving good results.