Abstract:Key information extraction (KIE) from visually rich documents (VRD) has been a challenging task in document intelligence because of not only the complicated and diverse layouts of VRD that make the model hard to generalize but also the lack of methods to exploit the multimodal features in VRD. In this paper, we propose a light-weight model named GraphRevisedIE that effectively embeds multimodal features such as textual, visual, and layout features from VRD and leverages graph revision and graph convolution to enrich the multimodal embedding with global context. Extensive experiments on multiple real-world datasets show that GraphRevisedIE generalizes to documents of varied layouts and achieves comparable or better performance compared to previous KIE methods. We also publish a business license dataset that contains both real-life and synthesized documents to facilitate research of document KIE.
Abstract:Sequential recommendation is a task to capture hidden user preferences from historical user item interaction data. Significant progress has been made in this domain by leveraging classification based learning methods. Inspired by the recent paradigm of 'pretrain, prompt and predict' in NLP, we consider sequential recommendation as a sequence to sequence generation task and propose a novel model named Generative Recommendation (GenRec). Unlike classification based models that learn explicit user and item representations, GenRec utilizes the sequence modeling capability of Transformer and adopts the masked item prediction objective to effectively learn the hidden bidirectional sequential patterns. Different from existing generative sequential recommendation models, GenRec does not rely on manually designed hard prompts. The input to GenRec is textual user item sequence and the output is top ranked next items. Moreover, GenRec is lightweight and requires only a few hours to train effectively in low-resource settings, making it highly applicable to real-world scenarios and helping to democratize large language models in the sequential recommendation domain. Our extensive experiments have demonstrated that GenRec generalizes on various public real-world datasets and achieves state-of-the-art results. Our experiments also validate the effectiveness of the the proposed masked item prediction objective that improves the model performance by a large margin.
Abstract:Key information extraction (KIE) from scanned documents has gained increasing attention because of its applications in various domains. Although promising results have been achieved by some recent KIE approaches, they are usually built based on discriminative models, which lack the ability to handle optical character recognition (OCR) errors and require laborious token-level labelling. In this paper, we propose a novel generative end-to-end model, named GenKIE, to address the KIE task. GenKIE is a sequence-to-sequence multimodal generative model that utilizes multimodal encoders to embed visual, layout and textual features and a decoder to generate the desired output. Well-designed prompts are leveraged to incorporate the label semantics as the weakly supervised signals and entice the generation of the key information. One notable advantage of the generative model is that it enables automatic correction of OCR errors. Besides, token-level granular annotation is not required. Extensive experiments on multiple public real-world datasets show that GenKIE effectively generalizes over different types of documents and achieves state-of-the-art results. Our experiments also validate the model's robustness against OCR errors, making GenKIE highly applicable in real-world scenarios.