Abstract:This paper explores the integration of two AI subdisciplines employed in the development of artificial agents that exhibit intelligent behavior: Large Language Models (LLMs) and Cognitive Architectures (CAs). We present three integration approaches, each grounded in theoretical models and supported by preliminary empirical evidence. The modular approach, which introduces four models with varying degrees of integration, makes use of chain-of-thought prompting, and draws inspiration from augmented LLMs, the Common Model of Cognition, and the simulation theory of cognition. The agency approach, motivated by the Society of Mind theory and the LIDA cognitive architecture, proposes the formation of agent collections that interact at micro and macro cognitive levels, driven by either LLMs or symbolic components. The neuro-symbolic approach, which takes inspiration from the CLARION cognitive architecture, proposes a model where bottom-up learning extracts symbolic representations from an LLM layer and top-down guidance utilizes symbolic representations to direct prompt engineering in the LLM layer. These approaches aim to harness the strengths of both LLMs and CAs, while mitigating their weaknesses, thereby advancing the development of more robust AI systems. We discuss the tradeoffs and challenges associated with each approach.
Abstract:Natural language interfaces have become a common part of modern digital life. Chatbots utilize text-based conversations to communicate with users; personal assistants on smartphones such as Google Assistant take direct speech commands from their users; and speech-controlled devices such as Amazon Echo use voice as their only input mode. In this paper, we introduce InstructableCrowd, a crowd-powered system that allows users to program their devices via conversation. The user verbally expresses a problem to the system, in which a group of crowd workers collectively respond and program relevant multi-part IF-THEN rules to help the user. The IF-THEN rules generated by InstructableCrowd connect relevant sensor combinations (e.g., location, weather, device acceleration, etc.) to useful effectors (e.g., text messages, device alarms, etc.). Our study showed that non-programmers can use the conversational interface of InstructableCrowd to create IF-THEN rules that have similar quality compared with the rules created manually. InstructableCrowd generally illustrates how users may converse with their devices, not only to trigger simple voice commands, but also to personalize their increasingly powerful and complicated devices.
Abstract:Intelligent Personal Assistants (IPAs) are software agents that can perform tasks on behalf of individuals and assist them on many of their daily activities. IPAs capabilities are expanding rapidly due to the recent advances on areas such as natural language processing, machine learning, artificial cognition, and ubiquitous computing, which equip the agents with competences to understand what users say, collect information from everyday ubiquitous devices (e.g., smartphones, wearables, tablets, laptops, cars, household appliances, etc.), learn user preferences, deliver data-driven search results, and make decisions based on user's context. Apart from the inherent complexity of building such IPAs, developers and researchers have to address many critical architectural challenges (e.g., low-latency, scalability, concurrency, ubiquity, code mobility, interoperability, support to cognitive services and reasoning, to name a few.), thereby diverting them from their main goal: building IPAs. Thus, our contribution in this paper is twofold: 1) we propose an architecture for a platform-agnostic, high-performance, ubiquitous, and distributed middleware that alleviates the burdensome task of dealing with low-level implementation details when building IPAs by adding multiple abstraction layers that hide the underlying complexity; and 2) we present an implementation of the middleware that concretizes the aforementioned architecture and allows the development of high-level capabilities while scaling the system up to hundreds of thousands of IPAs with no extra effort. We demonstrate the powerfulness of our middleware by analyzing software metrics for complexity, effort, performance, cohesion and coupling when developing a conversational IPA.
Abstract:Automatic service composition in mobile and pervasive computing faces many challenges due to the complex nature of the environment. Common approaches address service composition from optimization perspectives which are not feasible in practice due to the intractability of the problem, limited computational resources of smart devices, service host's mobility, and time constraints. Our main contribution is the development of a cognitively-inspired agent-based service composition model focused on bounded rationality rather than optimality, which allows the system to compensate for limited resources by selectively filtering out continuous streams of data. The evaluation of our approach shows promising results when compared against state-of-the-art service composition models.
Abstract:Automatic service composition in mobile and pervasive computing faces many challenges due to the complex and highly dynamic nature of the environment. Common approaches consider service composition as a decision problem whose solution is usually addressed from optimization perspectives which are not feasible in practice due to the intractability of the problem, limited computational resources of smart devices, service host's mobility, and time constraints to tailor composition plans. Thus, our main contribution is the development of a cognitively-inspired agent-based service composition model focused on bounded rationality rather than optimality, which allows the system to compensate for limited resources by selectively filtering out continuous streams of data. Our approach exhibits features such as distributedness, modularity, emergent global functionality, and robustness, which endow it with capabilities to perform decentralized service composition by orchestrating manifold service providers and conflicting goals from multiple users. The evaluation of our approach shows promising results when compared against state-of-the-art service composition models.