Abstract:Deep convolutional neural networks (DCNN) aided high dynamic range (HDR) imaging recently received a lot of attention. The quality of DCNN generated HDR images have overperformed the traditional counterparts. However, DCNN is prone to be computationally intensive and power-hungry. To address the challenge, we propose LightFuse, a light-weight CNN-based algorithm for extreme dual-exposure image fusion, which can be implemented on various embedded computing platforms with limited power and hardware resources. Two sub-networks are utilized: a GlobalNet (G) and a DetailNet (D). The goal of G is to learn the global illumination information on the spatial dimension, whereas D aims to enhance local details on the channel dimension. Both G and D are based solely on depthwise convolution (D Conv) and pointwise convolution (P Conv) to reduce required parameters and computations. Experimental results display that the proposed technique could generate HDR images with plausible details in extremely exposed regions. Our PSNR score exceeds the other state-of-the-art approaches by 1.2 to 1.6 times and achieves 1.4 to 20 times FLOP and parameter reduction compared with others.
Abstract:Wide dynamic range (WDR) image tone mapping is in high demand in many applications like film production, security monitoring, and photography. It is especially crucial for mobile devices because most of the images taken today are from mobile phones, hence such technology is highly demanded in the consumer market of mobile devices and is essential for a good customer experience. However, high-quality and high-performance WDR image tone mapping implementations are rarely found in the mobile-end. In this paper, we introduce a high performance, mobile-end WDR image tone mapping implementation. It leverages the tone mapping results of multiple receptive fields and calculates a suitable value for each pixel. The utilization of integral image and integral histogram significantly reduce the required computation. Moreover, GPU parallel computation is used to increase the processing speed. The experimental results indicate that our implementation can process a high-resolution WDR image within a second on mobile devices and produce appealing image quality.
Abstract:In this paper, we present a novel tone mapping algorithm that can be used for displaying wide dynamic range (WDR) images on low dynamic range (LDR) devices. The proposed algorithm is mainly motivated by the logarithmic response and local adaptation features of the human visual system (HVS). HVS perceives luminance differently when under different adaptation levels, and therefore our algorithm uses functions built upon different scales to tone map pixels to different values. Functions of large scales are used to maintain image brightness consistency and functions of small scales are used to preserve local detail and contrast. An efficient method using local variance has been proposed to fuse the values of different scales and to remove artifacts. The algorithm utilizes integral images and integral histograms to reduce computation complexity and processing time. Experimental results show that the proposed algorithm can generate high brightness, good contrast, and appealing images that surpass the performance of many state-of-the-art tone mapping algorithms. This project is available at https://github.com/jieyang1987/ToneMapping-Based-on-Multi-scale-Histogram-Synthesis.
Abstract:Wide dynamic range (WDR) images contain more scene details and contrast when compared to common images. However, it requires tone mapping to process the pixel values in order to display properly. The details of WDR images can diminish during the tone mapping process. In this work, we address the problem by combining a novel reformulated Laplacian pyramid and deep learning. The reformulated Laplacian pyramid always decompose a WDR image into two frequency bands where the low-frequency band is global feature-oriented, and the high-frequency band is local feature-oriented. The reformulation preserves the local features in its original resolution and condenses the global features into a low-resolution image. The generated frequency bands are reconstructed and fine-tuned to output the final tone mapped image that can display on the screen with minimum detail and contrast loss. The experimental results demonstrate that the proposed method outperforms state-of-the-art WDR image tone mapping methods. The code is made publicly available at https://github.com/linmc86/Deep-Reformulated-Laplacian-Tone-Mapping.
Abstract:Currently, face detection approaches focus on facial information by varying specific parameters including pose, occlusion, lighting, background, race, and gender. These studies only utilized the information obtained from low dynamic range images, however, face detection in wide dynamic range (WDR) scenes has received little attention. To our knowledge, there is no publicly available WDR database for face detection research. To facilitate and support future face detection research in the WDR field, we propose the first WDR database for face detection, called WDR FACE, which contains a total of 398 16-bit megapixel grayscale wide dynamic range images collected from 29 subjects. These WDR images (WDRIs) were taken in eight specific WDR scenes. The dynamic range of 90% images surpasses 60,000:1, and that of 70% images exceeds 65,000:1. Furthermore, we show the effect of different face detection procedures on the WDRIs in our database. This is done with 25 different tone mapping operators and five different face detectors. We provide preliminary experimental results of face detection on this unique WDR database.