Abstract:Following the successful debut of polyp detection and characterization, more advanced automation tools are being developed for colonoscopy. The new automation tasks, such as quality metrics or report generation, require understanding of the procedure flow that includes activities, events, anatomical landmarks, etc. In this work we present a method for automatic semantic parsing of colonoscopy videos. The method uses a novel DL multi-label temporal segmentation model trained in supervised and unsupervised regimes. We evaluate the accuracy of the method on a test set of over 300 annotated colonoscopy videos, and use ablation to explore the relative importance of various method's components.
Abstract:We propose a two-stage unsupervised approach for parsing videos into phases. We use motion cues to divide the video into coarse segments. Noisy segment labels are then used to weakly supervise an appearance-based classifier. We show the effectiveness of the method for phase detection in colonoscopy videos.