Abstract:Load forecasting is essential for the efficient, reliable, and cost-effective management of power systems. Load forecasting performance can be improved by learning the similarities among multiple entities (e.g., regions, buildings). Techniques based on multi-task learning obtain predictions by leveraging consumption patterns from the historical load demand of multiple entities and their relationships. However, existing techniques cannot effectively assess inherent uncertainties in load demand or account for dynamic changes in consumption patterns. This paper proposes a multi-task learning technique for online and probabilistic load forecasting. This technique provides accurate probabilistic predictions for the loads of multiple entities by leveraging their dynamic similarities. The method's performance is evaluated using datasets that register the load demand of multiple entities and contain diverse and dynamic consumption patterns. The experimental results show that the proposed method can significantly enhance the effectiveness of current multi-task learning approaches across a wide variety of load consumption scenarios.
Abstract:Electronic health records contain valuable information for monitoring patients' health trajectories over time. Disease progression models have been developed to understand the underlying patterns and dynamics of diseases using these data as sequences. However, analyzing temporal data from EHRs is challenging due to the variability and irregularities present in medical records. We propose a Markovian generative model of treatments developed to (i) model the irregular time intervals between medical events; (ii) classify treatments into subtypes based on the patient sequence of medical events and the time intervals between them; and (iii) segment treatments into subsequences of disease progression patterns. We assume that sequences have an associated structure of latent variables: a latent class representing the different subtypes of treatments; and a set of latent stages indicating the phase of progression of the treatments. We use the Expectation-Maximization algorithm to learn the model, which is efficiently solved with a dynamic programming-based method. Various parametric models have been employed to model the time intervals between medical events during the learning process, including the geometric, exponential, and Weibull distributions. The results demonstrate the effectiveness of our model in recovering the underlying model from data and accurately modeling the irregular time intervals between medical actions.