Abstract:Effective communication between healthcare providers and patients is crucial to providing high-quality patient care. In this work, we investigate how Doctor-written and AI-generated texts in healthcare consultations can be classified using state-of-the-art embeddings and one-shot classification systems. By analyzing embeddings such as bag-of-words, character n-grams, Word2Vec, GloVe, fastText, and GPT2 embeddings, we examine how well our one-shot classification systems capture semantic information within medical consultations. Results show that the embeddings are capable of capturing semantic features from text in a reliable and adaptable manner. Overall, Word2Vec, GloVe and Character n-grams embeddings performed well, indicating their suitability for modeling targeted to this task. GPT2 embedding also shows notable performance, indicating its suitability for models tailored to this task as well. Our machine learning architectures significantly improved the quality of health conversations when training data are scarce, improving communication between patients and healthcare providers.
Abstract:The use of transfer learning methods is largely responsible for the present breakthrough in Natural Learning Processing (NLP) tasks across multiple domains. In order to solve the problem of sentiment detection, we examined the performance of four different types of well-known state-of-the-art transformer models for text classification. Models such as Bidirectional Encoder Representations from Transformers (BERT), Robustly Optimized BERT Pre-training Approach (RoBERTa), a distilled version of BERT (DistilBERT), and a large bidirectional neural network architecture (XLNet) were proposed. The performance of the four models that were used to detect disaster in the text was compared. All the models performed well enough, indicating that transformer-based models are suitable for the detection of disaster in text. The RoBERTa transformer model performs best on the test dataset with a score of 82.6% and is highly recommended for quality predictions. Furthermore, we discovered that the learning algorithms' performance was influenced by the pre-processing techniques, the nature of words in the vocabulary, unbalanced labeling, and the model parameters.