Abstract:Premature coronary artery disease (PCAD) refers to the early onset of the disease, usually before the age of 55 for men and 65 for women. Coronary Artery Disease (CAD) develops when coronary arteries, the major blood vessels supplying the heart with blood, oxygen, and nutrients, become clogged or diseased. This is often due to many risk factors, including lifestyle and cardiometabolic ones, but few studies were done on ethnicity as one of these risk factors, especially in PCAD. In this study, we tested the rank of ethnicity among the major risk factors of PCAD, including age, gender, body mass index (BMI), visceral obesity presented as waist circumference (WC), diabetes mellitus (DM), high blood pressure (HBP), high low-density lipoprotein cholesterol (LDL-C), and smoking in a large national sample of patients with PCAD from different ethnicities. All patients who met the age criteria underwent coronary angiography to confirm CAD diagnosis. The weight of ethnicity was compared to the other eight features using feature weighting algorithms in PCAD diagnosis. In addition, we conducted an experiment where we ran predictive models (classification algorithms) to predict PCAD. We compared the performance of these models under two conditions: we trained the classification algorithms, including or excluding ethnicity. This study analyzed various factors to determine their predictive power influencing PCAD prediction. Among these factors, gender and age were the most significant predictors, with ethnicity being the third most important. The results also showed that if ethnicity is used as one of the input risk factors for classification algorithms, it can improve their efficiency. Our results show that ethnicity ranks as an influential factor in predicting PCAD. Therefore, it needs to be addressed in the PCAD diagnostic and preventive measures.
Abstract:Familial Hypercholesterolemia (FH) is a genetic disorder characterized by elevated levels of Low-Density Lipoprotein (LDL) cholesterol or its associated genes. Early-stage and accurate categorization of FH is of significance allowing for timely interventions to mitigate the risk of life-threatening conditions. Conventional diagnosis approach, however, is complex, costly, and a challenging interpretation task even for experienced clinicians resulting in high underdiagnosis rates. Although there has been a recent surge of interest in using Machine Learning (ML) models for early FH detection, existing solutions only consider a binary classification task solely using classical ML models. Despite its significance, application of Deep Learning (DL) for FH detection is in its infancy, possibly, due to categorical nature of the underlying clinical data. The paper addresses this gap by introducing the FH-TabNet, which is a multi-stage tabular DL network for multi-class (Definite, Probable, Possible, and Unlikely) FH detection. The FH-TabNet initially involves applying a deep tabular data learning architecture (TabNet) for primary categorization into healthy (Possible/Unlikely) and patient (Probable/Definite) classes. Subsequently, independent TabNet classifiers are applied to each subgroup, enabling refined classification. The model's performance is evaluated through 5-fold cross-validation illustrating superior performance in categorizing FH patients, particularly in the challenging low-prevalence subcategories.