Abstract:This paper presents a framework which uses computer vision algorithms to standardise images and analyse them for identifying crop diseases automatically. The tools are created to bridge the information gap between farmers, advisory call centres and agricultural experts using the images of diseased/infected crop captured by mobile-phones. These images are generally sensitive to a number of factors including camera type and lighting. We therefore propose a technique for standardising the colour of plant images within the context of the advisory system. Subsequently, to aid the advisory process, the disease recognition process is automated using image processing in conjunction with machine learning techniques. We describe our proposed leaf extraction, affected area segmentation and disease classification techniques. The proposed disease recognition system is tested using six mango diseases and the results show over 80% accuracy. The final output of our system is a list of possible diseases with relevant management advice.
Abstract:Automatic plant recognition and disease analysis may be streamlined by an image of a complete, isolated leaf as an initial input. Segmenting leaves from natural images is a hard problem. Cluttered and complex backgrounds: often composed of other leaves are commonplace. Furthermore, their appearance is highly dependent upon illumination and viewing perspective. In order to address these issues we propose a methodology which exploits the leaves venous systems in tandem with other low level features. Background and leaf markers are created using colour, intensity and texture. Two approaches are investigated: watershed and graph-cut and results compared. Primary-secondary vein detection and a protrusion-notch removal are applied to refine the extracted leaf. The efficacy of our approach is demonstrated against existing work.