Technical University of Denmark
Abstract:In this paper we formalise three types of cognitive bias within the framework of belief revision: confirmation bias, framing bias, and anchoring bias. We interpret them generally, as restrictions on the process of iterated revision, and we apply them to three well-known belief revision methods: conditioning, lexicographic revision, and minimal revision. We investigate the reliability of biased belief revision methods in truth tracking. We also run computer simulations to assess the performance of biased belief revision in random scenarios.
Abstract:We consider a learning agent in a partially observable environment, with which the agent has never interacted before, and about which it learns both what it can observe and how its actions affect the environment. The agent can learn about this domain from experience gathered by taking actions in the domain and observing their results. We present learning algorithms capable of learning as much as possible (in a well-defined sense) both about what is directly observable and about what actions do in the domain, given the learner's observational constraints. We differentiate the level of domain knowledge attained by each algorithm, and characterize the type of observations required to reach it. The algorithms use dynamic epistemic logic (DEL) to represent the learned domain information symbolically. Our work continues that of Bolander and Gierasimczuk (2015), which developed DEL-based learning algorithms based to learn domain information in fully observable domains.
Abstract:We investigate the issues of inductive problem-solving and learning by doxastic agents. We provide topological characterizations of solvability and learnability, and we use them to prove that AGM-style belief revision is "universal", i.e., that every solvable problem is solvable by AGM conditioning.
Abstract:In dynamic epistemic logic, actions are described using action models. In this paper we introduce a framework for studying learnability of action models from observations. We present first results concerning propositional action models. First we check two basic learnability criteria: finite identifiability (conclusively inferring the appropriate action model in finite time) and identifiability in the limit (inconclusive convergence to the right action model). We show that deterministic actions are finitely identifiable, while non-deterministic actions require more learning power-they are identifiable in the limit. We then move on to a particular learning method, which proceeds via restriction of a space of events within a learning-specific action model. This way of learning closely resembles the well-known update method from dynamic epistemic logic. We introduce several different learning methods suited for finite identifiability of particular types of deterministic actions.