Abstract:Viruses are submicroscopic agents that can infect all kinds of lifeforms and use their hosts' living cells to replicate themselves. Despite having some of the simplest genetic structures among all living beings, viruses are highly adaptable, resilient, and given the right conditions, are capable of causing unforeseen complications in their hosts' bodies. Due to their multiple transmission pathways, high contagion rate, and lethality, viruses are the biggest biological threat faced by animal and plant species. It is often challenging to promptly detect the presence of a virus in a possible host's body and accurately determine its type using manual examination techniques; however, it can be done using computer-based automatic diagnosis methods. Most notably, the analysis of Transmission Electron Microscopy (TEM) images has been proven to be quite successful in instant virus identification. Using TEM images collected from a recently published dataset, this article proposes a deep learning-based classification model to identify the type of virus within those images correctly. The methodology of this study includes two coherent image processing techniques to reduce the noise present in the raw microscopy images. Experimental results show that it can differentiate among the 14 types of viruses present in the dataset with a maximum of 97.44% classification accuracy and F1-score, which asserts the effectiveness and reliability of the proposed method. Implementing this scheme will impart a fast and dependable way of virus identification subsidiary to the thorough diagnostic procedures.
Abstract:Electromyography (EMG) is a way of measuring the bioelectric activities that take place inside the muscles. EMG is usually performed to detect abnormalities within the nerves or muscles of a target area. The recent developments in the field of Machine Learning allow us to use EMG signals to teach machines the complex properties of human movements. Modern machines are capable of detecting numerous human activities and distinguishing among them solely based on the EMG signals produced by those activities. However, success in accomplishing this task mostly depends on the learning technique used by the machine to analyze EMG signals; and even the latest algorithms do not result in flawless classification. In this study, a novel classification method has been described employing a multichannel Convolutional Neural Network (CNN) that interprets surface EMG signals by the properties they exhibit in the power domain. The proposed method was tested on a well-established EMG dataset, and the result yields very high classification accuracy. This learning model will help researchers to develop prosthetic arms capable of detecting various hand gestures to mimic them afterwards.
Abstract:Human Activity Recognition (HAR) simply refers to the capacity of a machine to perceive human actions. HAR is a prominent application of advanced Machine Learning and Artificial Intelligence techniques that utilize computer vision to understand the semantic meanings of heterogeneous human actions. This paper describes a supervised learning method that can distinguish human actions based on data collected from practical human movements. The primary challenge while working with HAR is to overcome the difficulties that come with the cyclostationary nature of the activity signals. This study proposes a HAR classification model based on a two-channel Convolutional Neural Network (CNN) that makes use of the frequency and power features of the collected human action signals. The model was tested on the UCI HAR dataset, which resulted in a 95.25% classification accuracy. This approach will help to conduct further researches on the recognition of human activities based on their biomedical signals.
Abstract:Diabetic retinopathy (DR) is the primary cause of vision loss among grownup people around the world. In four out of five cases having diabetes for a prolonged period leads to DR. If detected early, more than 90 percent of the new DR occurrences can be prevented from turning into blindness through proper treatment. Despite having multiple treatment procedures available that are well capable to deal with DR, the negligence and failure of early detection cost most of the DR patients their precious eyesight. The recent developments in the field of Digital Image Processing (DIP) and Machine Learning (ML) have paved the way to use machines in this regard. The contemporary technologies allow us to develop devices capable of automatically detecting the condition of a persons eyes based on their retinal images. However, in practice, several factors hinder the quality of the captured images and impede the detection outcome. In this study, a novel early blind detection method has been proposed based on the color information extracted from retinal images using an ensemble learning algorithm. The method has been tested on a set of retinal images collected from people living in the rural areas of South Asia, which resulted in a 91 percent classification accuracy.